
NUSC Technical Document 7000
20 March 1991

Distributed Ada Programs on
Heterogeneous Systems

B. W. Stevens
Combat Control Systems Department

026/
REFERENCE COPY

Naval Underwater Systems Center
Newport, Rhode Island • New London, Connecticut

Approved for public release; distribution is unlimited. 19950613 039

PREFACE

This report was prepared under NUSC Project No. F45146,
"Next Generation Computer Resources (NGCR)," principal
investigator B. W. Stevens (Code 2221). The sponsoring activity is
the Space and Naval Warfare Systems Command (SPAWAR 231).

The technical reviewer for this report was J. W. Brennan Jr.

Appreciation and gratitude is gratefully extended to Dr. Charles
Arnold of the University of Rhode Island, for his instruction and for
serving as thesis advisor. His presentations, comments, and wisdom were
invaluable during the preparation of this report. I would also like to
extend thanks to my coworkers, T. P. Conrad, for his encouragement and
constructive criticism, and Mr. Brennan, for his careful attention in
detecting not-so-obvious errors and problems.

REVIEWED AND APPROVED: 20 MARCH 1991

P. A La Brecque
Head, Combat Control Systems Department

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

»ublic reoonina burden for thi» collection of information i» estimated to average I hour o»f re*pon«e. including th« time for reviewing injunction», searching cutting data tourers.
aatharinoand maintaining the data needed, and completing and reviewing the collection of information. Send comment! regarding thi» burden estimate or any other aspect of thi»
collection of informauon/induding wggntiom for reducing thi» burden, to Washington Headquarten Service». Directorate for information Operation» and reports. 1211 Jefferson
Davis Highway Suite «04, Arlington. V* 22202-4302. and to theOfficeof Management and Budget. Papervrt)rl(«eduction *TOject(0704-01M).vya»hlngton. OC 20S0J.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

20 March 1991

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Distributed Ada Programs on Heterogeneous Systems

6. AUTHOR(S)

B. W. Stevens

7. PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES)

Naval Underwater Systems Center
Newport Laboratory
Newport, RI 02841-5047

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Space and Naval Warfare Systems Command
SPAWAR 324
Arlington, VA 22202

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

TQ 7000

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This study investigated distributed applications written in the Ada programming
language, in particular, the applications that are implemented on systems dissimilar
in underlying hardware architecture and operating systems that require the exchange
of data and control. The approach presented in this report rejects the suggestion
of modifying both the Ada runtime environment and the Ada language itself to achieve
distribution of real-time applications. Distribution can be achieved in the spirit
of Ada without use of Ada's tasking features, through use of well-defined standard
network or backplane interfaces through other Ada features such as packages and

subprograms.

The Ada programming language is mandated as the single high-order language used
in implementing systems currently being delivered to the Department of Defense (DoD).
Many of these systems are presently under development and are distributed in nature.
The Ada programming language contains an abstract feature known as a task, which could
lend itself to distribution. The Ada Programming Language Reference Manual, ANSI/MIL-
STD-1815A, mentions in a note that "parallel tasks...may be implemented on multi-

14. SUBJECT TERMS

Programming Languages
Distributed Computer Systems
DoD Software

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

61
16. PRICE CODE

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
l'«'"^ »v AMti Irrt 719.18

13. ABSTRACT (Cont'd)

computers, multiprocessors, or with interleaved execution on a single physical
processor." Currently, many implementations of Ada runtime environments are
relatively young when compared with the runtimes of other high order languages.
The immaturity of these runtimes is indicated by the fact that many implementors
have chosen to interleave execution of tasks on a single physical processor.
With many DoD programs bounded by project deadlines and limited budgets, solu-
tions to the Ada distribution problem must be found now. The developer's time
should be spent solving application issues, not experimenting with new runtime
functionality when developing distributed applications.

It is the author's intent to determine if rigorous definition of an inter-
face to currently existing network protocols such as DECnet, TCP/IP, SAFENET I,
and SAFENET II can answer the near term requirements for heterogeneously distri-

buted applications written in Ada.

TABLE OF CONTENTS

1 INTRODUCTION 1

2 TYPES OF DISTRIBUTED SYSTEMS 2

2.1 Conformance Types 2

2.2 A Taxonomy of DoD System Architectures 2

2.2.1 Multiprocessor Systems 3

2.2.1.1 Futurebus+ 3

2.2.1.2 Scalable Coherent Interface 6

2.2.2 Moderately Coupled Multiprocessor Systems 6

2.2.3 Loosely Coupled Systems 7

2.2.3.1 Network Standards and Protocols 7

2.2.3.1.1 OSI Reference Model 9

2.2.3.1.2 TCP/IP 11

2.2.3.1.3 DECnet 12

2.2.3.1.4 SAFENET 15

2.3 Distributed System Software Requirements 19

3 TYPES OF DISTRIBUTED SYSTEMS WITH ADA 21

3.1 Distributed Ada System Models 21

3.1.1 Ada on Multiprocessor Systems 21

3.1.2 Ada on Moderately Coupled Systems 23

3.1.3 Ada on Loosely Coupled Systems 24

4 PROGRAMMING TECHNIQUES 28

4.1 A Network Interface 28

-l-

4.1.1 TCP_IO Interface Primitives 29

4.1.2 Package VAX IEEE 32

4.1.3 TCPIO Interface Primitives 33

4.1.4 Compiler Differences 35

4.1.5 Primitive Calling Sequence 37

4.1.5.1 Server Calling Sequence 37

4.1.5.2 Client Calling Sequence 38

4.1.6 Programming Considerations 39

4.1.7 Ada Program Communication 39

4.1.8 Implementation of Remote Procedure Call 42

5 CONCLUSIONS 45

REFERENCES 47

BIBLIOGRAPHY 51

li-

LIST OF ILLUSTRATIONS

Figure Page

1 Simple Multiprocessor Systems (Conformance Type 2A) 4
2 Complex Multiprocessor System with Local Memory

(Conformance Type 2B) 5
3 Futurebus+ Versus OSI Layers [AND90] 6
4 Moderately Coupled Multicomputer System (Conformance Type 3) . . . 7
5 Loosely Coupled System (Conformance Type 4) 8
6 Open Systems Interconnection Reference Model 10
7 A Comparison of the OSI and DOD Communications Architecture . . 13
8 The Layers of DNA [DEC87] 14
9 SAFENET I Protocol Profile [SAF901] 16
10 SAFENET II Protocol Profile [SAF902] 17
11 ISO Model to SAFENET Protocol Suite Mapping . 18
12 TCP/IP Primitive Calling Sequence 38
13 Sender/Receiver Tasks 40
14 An Implementation of RPC in Ada 43

LIST OF TABLES

Table Page

I Conformance Types 2
II DoD Military Standard Protocols [STA88] 11
HI Distributed Software Service Requirements 20
IV Ada Runtime Modification Requirements 25
V Ada Compiler Type Differences 36

- iii/iv -
Reverse Blank

1 INTRODUCTION

It has long been recognized by the Department of Defense's (DoD)
software initiative that the future requirements for defense systems in the 1990's
would exhibit the following characteristics among others. The systems will use
multiprocessor, networked, and parallel architectures. The cost for developing,
evolving, and maintaining defense software will have grown to become a principal
factor in the determination of U.S. capabilities [LIE86]. The four technical
solutions to controlling this growing software complexity proposed by DoD's
software initiative are:

1) Greater use of automation,
2) Higher levels of abstraction,
3) Reusability, and
4) Rapid prototyping.

The three major components of the software initiative currently being used
by DoD to research and develop these solutions are:

1) The Ada program,
2) The STARS program, and
3) The Software Engineering Institute.

It has also been accepted in the communications industry that standards
are required to govern the physical, electrical, and procedural characteristics of
communication equipment [STA872]. Computer vendors, on the other hand, have
traditionally attempted to monopolize their customers. DoD has recognized that
systems produced by different vendors must be able to communicate with each
other. Heterogeneous communication can be assured through the development of
communication standards that are adhered to by all vendors producing systems for
DoD.

This report addresses the Ada programming language in relation to its use
on systems that are parallel and distributed in nature, in particular, those which
are not alike in their underlying architecture. This study examines what can be
done to reduce the amount of time and cost of building real-time distributed
heterogeneous systems using Ada.

2 TYPES OF DISTRIBUTED SYSTEMS

This section will discuss the similarities, variations, and characteristics of
distributed systems.

2.1 Conformance Types

Table I delineates a list of distributed system hardware architectures,
referred to as conformance types, which will be considered. Conformance type 0
(kernel system) and conformance type 1 (uniprocessor system) essentially have no
distribution, but are included for completeness.

Table I Conformance Types

Conformance
Type

Description

0 Kernel system

1 Uniprocessor system

2 Multiprocessor system connected by a memory bus
(A) or backplane (B) with global memory

3 Multiple computers connected by a backplane bus
or a single segment LAN with no global memory or
store-and-forward

4 Loosely coupled systems such as multi-segment
bridged LANs to full WANs with store-and-forward

2.2 A Taxonomy of DoD System Architectures

There are basically three ways in which multiple processors are distributed.
The first model considers placing multiple processors on the same memory bus or
backplane with access to global memory and will be referred to hereinafter as
multiprocessor systems (conformance type 2). A memory bus is a low protocol
media that allows multiple devices to access a common address space. In
contrast, a backplane is a high protocol bus that also allows multiple devices to
access a common address space. The backplane protocol allows more
sophisticated ways for devices to communicate and interact with each other.

The second model is somewhat similar to the multiprocessor system model
with one major difference, connection is provided via the more sophisticated

-2-

backplane or single segment local area network (LAN) and there is an absence of
global memory (conformance type 3). This system architecture will be referred to
hereinafter as the moderately coupled distributed system.

The third model considers placing multiple processors or groups of
multiple processors on a common network with store-and-forward and will be
referred to hereinafter as a loosely coupled system (conformance type 4).

2.2.1 Multiprocessor Systems

In a multiprocessor system it is possible for the processors to share the
same set of system resources such as memory, network interfaces, peripherals,
etc., over a common memory bus or backplane. It is feasible for a global clock to
be shared by all processors. Negligible execution overhead is exhibited when the
clock resides on the same backplane as the processors. Having a global clock
allows for a more consistent global state throughout the multiprocessor system. It
is possible for the hardware to provide interprocessor interrupt generating
facilities which may be used to synchronize and signal concurrent actions. It is
also a trivial matter to communicate data by sharing globally addressable memory
located on the same memory bus or backplane for a set of homogeneous
processors [CH089]. The architecture for a simple multiprocessor system with
global memory is depicted in Figure 1.

Where the processors are heterogeneous (i.e., unlike in instruction set
architecture and basic data type representations), the possibility could arise where
analogous data are represented differently at the machine level. This would make
the sharing of data a non-trivial concern. It is also possible for each of the
processors to have access to its own private memory or to share memory with a
subset of all processors connected to a common backplane. This complex
multiprocessor architecture is depicted in Figure 2.

2.2.1.1 Futurebus +

The Navy's Next Generation Computer Resources Program (NGCR) has
assembled a backplane working group with the task of developing a set of
requirements for a backplane to be used on all future mission-critical computers.
The resulting standard is known as Futurebus+, which is a revised and extended
version of the original IEEE 896.1-1987 Futurebus standard [BOR90]. It is the
intent of the NGCR to help make the Futurebus + standard become a major
commercial success. Should this happen, the effect would be the reduction in the
amount of funding the government would need to expend on research and
development of system backplanes.

Futurebus + is a specification for a scalable architecture. Scalable pertains
to the width of the data path, which for Futurebus + may be 32, 64, 128, or 256

-3-

MEMORY BUS
(NO PROTOCOL)

GLOBAL
MEMORY

(CLOCKJ

[PROCESSOR 1 J (PROCESSOR 2 j [PROCESSOR 3 J (PROCESSOR 4 J

Figure 1 Simple Multiprocessor Systems (Conformance Type 2A)

bits wide. The scalability allows this bus, as the name would suggest, to address
future performance requirements in Navy systems. It has been determined that
the protocol throughput of this bus in the 32-bit mode in 1990 would be 100
Mbytes/second as opposed to the 256-bit mode in 1995, which would peak at 3.2
GBytes/second [BOR90].

Futurebus+ provides functionality that's not unlike a LAN. The
functionality can be described in layers much like the OSI model. The layers of
Futurebus+ are shown in Figure 3. A particular implementation of the layers of
Futurebus+ is known as a "profile." The Navy plans on specifying a set of profiles
to meet its requirements. At this point in time, four profiles have been identified,
but only two have been defined. Profile A specifies a 64-bit data-bus width with a
default width of 32-bits. Profile B specifies a 128-bit data-bus width with default
widths of 64-bits and 32-bits. Profile C will specify the cable interconnection for
communications between systems. Profile D will specify the Futurebus+ for
personal computer applications. Presently, profile C and D have not been
defined. The fact that the Navy has identified standard profiles does not prevent
industry from developing proprietary profiles to meet their own requirements
[AND90]. Draft 4.0 of the physical layer and profile specifications (P896.2) has
been released. Draft 8.2 of the logical layer and profile specifications (P896.1R)
has been released for the required 6-month review. Specifications for connector
requirements (P1101.2), BTL interface circuits electrical characteristics (P1194.1),

BACKPLANE

GLOBAL

MEMORY

(VARIOUS PROTOCOLS)

(CLOCK)

LOCAL
MEMORY

3-4

Figure 2 Complex Multiprocessor System with Local Memory (Conformance
Type 2B)

and the VME-to-Futurebus+ bridge (P1014.1) have been released in draft form
to date.

The Navy, under the NGCR program, has awarded three contracts to
develop prototype versions of the Futurebus+ backplane supporting the following
six processors:

1. MilVAX
2. MIPSR3000
3. Intel 80486
4. Motorola 68030
5. AMD 29000
6. Intel 88000.

Each of the three contractors has the job of building a single prototype backplane
to support two of the above processors, with a commonly addressable memory
board, a 1553 serial interface board, a naval tactical data system (NTDS) fast
interface board, a survivable, adaptable, fiber-optic embedded network
(SAFENET) I interface board, and a SAFENETII interface board. It can be
determined that the Navy plans on supporting heterogeneous processors on a

FUTUREBUS+PROFILE OPTIONS

APPLICATION BOARD FUNCTIONALITY

PRESENTATION
CONFIGURATION

CONTROL AND STATUS REGISTERS IEEE-P1212 CORE; OPTIONAL; BUS-SPECIFIC

SESSION

TRANSPORT INTRASYSTEM MULTICRATE CACHE PHOTOCOLS/MESSAGE-LEVEL MESSAGE PASSTNG

NETWORK COHERENCY SINGLE-CRATE CACHE PROTOCOLS/FRAME-LEVEL MESSAGE PASSING

DATA LINK

LOGICAL
LINK CONTROL

MEDIA ACCESS

PARALLEL PROTOCOL ::
COMPELLED OR PACKET MODE/CONNECTED OR SPLIT TRANSACTIONS

ARBITRATION, ACQUISITION AND CONTROL
PRIORITY OR ROUND-ROBIN; MDCED-MÖDE,SINGLE-STAGE, DUAL-STAGE

PHYSICAL

ELECTRICAL

PINOUT SPEaFICATION/ELECTRICAL PARAMETERS

DRIVERS: BTL (IEEE-P1194.1) / ECL / TTL / OTHER

MECHANICAL

CONNECTORS: METRAL / SEM / PROPRIETARY / OTHER

PITCH: 1.0 IN. / 0.8-IN. / 0.6 IN. / OTHER

BOARD SIZES: 6UX MM / 9UX_MM / SEM E / DESKTOP / OTHER

P896.1 MATERIAL PW&2 MATERIAL

Figure 3 Futurebus+ Versus OSI Layers [AND90]

common backplane with multiple backplanes being connected through a
SAFENET network.

2.2.1.2 Scalable Coherent Interface

The scalable coherent interface (SCI) is presently being established as a
standard defined by IEEE P1596 [ALN90] [GUS90]. It defines an interface
standard for very high performance multiprocessors. Like Futurebus + , SCI
supports a cache-coherent-memory model. SCI is scalable to systems with up to
64K nodes and will supply a peak bandwidth per node of 1 gigabyte/second.

2.2.2 Moderately Coupled Multiprocessor Systems

With the advent of backplanes such as Futurebus+ and SCI which support
complex protocols when compared to simple protocol memory buses, a new class
of systems can be considered. In this class, multiple processors are connected to
the same backplane without the availability of global memory. The processors do,
however, have access to local memory or locally shared memory. Other resources
such as storage device controllers, input/output devices, and network interface
devices can, however, be globally shared on the backplane. This architecture is
depicted in Figure 4 and is referred to as a moderately coupled system. Since the
backplanes support a complex protocol like those supported on LAN's the system
can be viewed as a single segment LAN where each node depicts a processor,
storage device controller, input/output device, network interface device, etc.

BACKPLANE OR LAN

Figure 4 Moderately Coupled Multicomputer System (Conformance Type 3)

2.2.3 Loosely Coupled Systems

In the loosely coupled system model, processors do not share a common
LAN or backplane. The common network becomes the only mechanism to share
data and control. It is possible to view the network as comprised of multiple
physical media connecting a number of nodes. Each node can be comprised of a
multiprocessor system or a moderately coupled system. This architecture is
depicted in Figure 5. Hereafter, when a loosely coupled system is referred to in
this report, it denotes a system with communication between a processor on one
node and a processor on another node through a network involving store-and-
forward packet delivery mechanisms. Multisegment LANs, bridges, and routers
are a few examples that fall into this category. Communications in loosely
coupled systems suffer much greater delays (because of the store-and-forward
nature) than the moderate delays of a single (moderately coupled) LAN or the
minimal delays of a tightly coupled multiprocessor.

2.2.3.1 Network Standards and Protocols

Many different standard network protocols exist that provide a wide range
of functions necessary to synchronize actions and communicate data. The DoD
has mandated the transmission control protocol/internet protocol (TCP/IP)
network protocol as the de jure standard for their networking needs [STA88].

-7-

GLOBAL

MEMORY

MEMORYBUS BACKPLANE

GLOBAL
MEMORY

NETWORK
INTERFACE

UNrT

(p^) (P2) (P3) (P4
NETWORK

INTERFACE
wrr

Figure 5 Loosely Coupled System (Conformance Type 4)

Some network standards were developed by a particular company and for the
most part remain proprietary, such as DECnet [STE88], but may become de facto
standards within organizations. The future protocol plans of the DoD are to
adopt the International Standards Organization (ISO) Open Systems
Interconnection (OSI) reference model. From the outset, the OSI model was
designed to become a standard [STA871] [TAN88].

The key advantages of standards are [STA872]:

They assure that there will be a large market for a particular piece
of equipment or software.
They allow products from multiple vendors to communicate, giving
the purchaser more flexibility in equipment or software selection
and use.

The tendency to freeze technology is the principal disadvantage of standards.
Much effort has gone into developing these standards to provide a mechanism
that will communicate between systems. Thus, the standards are worthy of further
study in the following sections. The OSI reference model is described first
followed by TCP/IP, DECnet, and SAFENET. The latter three are characterized
in relation to the OSI model.

-8-

2.2.3.1.1 OSI Reference Model

The development of a standard by ISO from initial proposal to final
publication involves a seven-step process. This process has built-in delays which
allows ample time for review and comment of the proposed standard by a wide
audience. This helps to insure that the resulting standard meets the main goal of
the ISO, that it will be acceptable to as many countries as possible. The seven
steps are briefly described below [STA871].

1. A new work item is assigned to the appropriate technical committee
(TC), and within that TC, to the appropriate working group (WG).
The WG prepares the technical specifications for the proposed
standard and publishes these as a draft proposal (DP). This DP is
circulated among interested members for balloting and technical
comment. At least 3 months is allowed, and there may be
iterations. When there is substantial support, the DP is sent to the
administrative arm of ISO, known as the central secretariat.

2. The DP is registered at the central secretariat within 2 months of
final approval by the TC.

3. The central secretariat edits the document to ensure conformity with
ISO practices; no technical changes are made. The edited
document is then issued as a draft international standard (DIS).

4. The DIS is circulated for a 6-month balloting period. For approval,
the DIS must receive a majority approval by the TC members and
75 percent approval of all voting members. Revisions may occur to
resolve any negative vote. If more than two negative votes remain,
it is unlikely that the DIS will be published as an international
standard (IS).

5. The approved DIS and revision are returned within 3 months to the
central secretariat for submission to the ISO council, which acts as
the board of directors of ISO.

6. The DIS is accepted by the council as an IS.
7. The IS is published by ISO.

The open systems interconnection reference model was one such standard
developed by the ISO. The OSI model defines seven layers [STA871] [TAN88],
which are depicted in Figure 6.

The physical layer is concerned with the physical (electrical, optical, etc.)
transmission of raw bits over a communication channel.

The data link layer is concerned with making the physical layer appear free
of transmission errors to the network layer. The key function of this layer is to
provide the mechanism by which frames are transmitted from source to
destination. This layer is composed of two sublayers in the case of a LAN. The
medium access control (MAC) sublayer defines the lower part of this layer and is
concerned with determining who gets access to a communications channel when

THE OSI REFERENCE MODEL

LAYER DESCRIPTION

7 APPLICATION APPLICATION / ADA TASK

6 PRESENTATION DATA REPRESENTATION

5 SESSION ACTIVITY MANAGEMENT

4 TRANSPORT MESSAGE SERVICES

3 NETWORK PACKET SERVICES

2 DATA LINK FRAME SERVICES

1 PHYSICAL BIT SERVICES

[TAN88]

Figure 6 Open Systems Interconnection Reference Model

there is competition for it [TAN88]. The logical link control sublayer defines the
upper part of this layer and is concerned with providing a uniform interface to the
network layer regardless of the MAC protocol used.

The network layer is concerned with controlling the operation of subnets.
The routing of packets from source to destination, congestion, and flow control
are the key issues addressed in this layer.

The transport layer is concerned with reliable end-to-end transport of
messages. The key issues addressed in this layer are the disassembling of
messages into packets to send to the network layer. This layer also assures that
packets arrive at the destination and are reassembled in the correct order to form
the original message.

The session layer is concerned with activity management between peer
entities. The key issues addressed in this layer are the use of the connection
established between the peer entities such as, token management and
synchronization.

The presentation layer is concerned with making the underlying differences
in data representation appear invisible to the layer above. The key issues
addressed in this layer involve insulating the application from the different ways a

-10

system may represent data such as strings, integers, floating point numbers, and so
on.

The application layer is concerned with high level functions commonly used
when communicating between nodes on the network such as electronic mail,
virtual terminal, file transfer, and the rest of the application universe.

2.2.3.1.2 TCP/IP

The DoD was faced with the necessity of providing communication
between an ever growing population of heterogeneous systems. The DOD
determined the need to fulfill the two following requirements [STA88].

End systems must share a common set of communication protocols
so they can interoperate.
The suite of protocols used for this purpose must support an
internetworking capability in a mixed-network environment.

In response to this need and through the evolution of ARPANET, the Defense
Communications Agency (DCA) issued the set of military standard protocols
listed in Table II. The ARPANET was the creation of ARPA (now DARPA), the
(Defense) Advanced Research Projects Agency of the U.S. Department of
Defense.

Table II DoD Military Standard Protocols [STA88]

Number Tide Description

MIL-STD-1777 Internet Protocol (IP)

MIL-STD-1778

MIL-STD-1780

MIL-STD-1781

MIL-STD-1782

Transmission Control
Protocol (TCP)

File Transport Protocol (FTP)

Simple Mail Transfer Protocol
(SMTP)

TELNET Protocol

A connectionless service for end
systems to communicate across one or
more networks. Does not assume the
networks to be reliable.

A reliable end-to-end data transfer
service. Equivalent to the ISO Class 4
transport protocol.

A simple application for transfer of
ASCII, EBCDIC, and binary files.

A simple electronic mail facility.

A simple scroll-mode terminal
capability

11

By mandating the use of a standard set of protocols, the DoD was able to
prevent smaller organizational units within from adopting varying and potentially
non-compatible existing protocols. The layers are not unlike the layers of the ISO
model.

The physical layer provides the physical media by which raw data are
exchanged between hosts.

The IMP-IMP layer provides the protocol that is used to transfer packets
from one information message processor (IMP) to another.

The source to destination IMP layer provides the mechanism that verifies
correct reception of packets at the destination IMP.

The host-to-host layer provides the mechanism by which data are
transferred reliably and in the same order as it was sent from one host to another.

The telnet, smtp, ftp layer provides protocols for virtual terminal, simple
mail transfer, and file transfer.

Finally, the process layer provides the protocols necessary to support a
variety of applications.

A comparison of the DoD networking layers and the ISO layers can be
seen in Figure 7. Even though this protocol was mandated by DoD, many
companies in private industry have adopted the protocol to solve the same
problems identified by DoD. It is also becoming more commonplace for
computer vendors to produce heterogeneous lines of computer systems such as
Digital Equipment Corporation's (DEC) VAX systems and their newer DEC
systems. The former is based on the VAX architecture and the latter is based on
the MIPS R3000 RISC architecture.

2.2.3.1.3 DECnet

DECnet, a product of Digital Equipment Corporation, employs the Digital
Network Architecture (DNA) model. Phase V of the DNA model is an
evolutionary step from the previous version of the DNA model known as Phase
IV. The Phase V model integrates the OSI model with the Phase IV model. The
lower four layers (i.e., the physical, data link, network, and transport layers) are,
for the most part, identical to the OSI model in terms of functionality. Two

12-

OSI TCP/IP

APPLICATION PROCESS

PRESENTATION TELNET, SMTP, FTP

SESSION (NONE)

TRANSPORT
HOST-TO-HOST

SOURCE TO DESTINATION
IMP

NETWORK

IMP-IMP
DATA UNK

PHYSICAL PHYSICAL

Figure 7 A Comparison of the OSI and DOD Communications Architecture

different protocol stacks reside above the transport layer in the DNA model as
shown in Figure 8.

The DNA physical layer has always been based on available standards that
include EIA RS-232-D, which includes the corresponding ISO standards and the
International Telegraph and Telephone Consultative Committee (CCITT)
recommendations, and the Ethernet standards as reflected in IEEE 802.3 and ISO
8802-3.

The DNA data link layer uses the high-level data link control (HDLC)
protocol. This protocol is described by ISO 4335 and ISO 7809. In the case of
local area networks, the logical link control protocol of IEEE 802.2 and ISO
8802-2 are employed.

The DNA network layer uses ISO 8473 for data transfer. This protocol is
the ISO protocol for providing the connectionless-mode network service (CLNS).
ISO 9542 is used to facilitate the exchange of routing information between end
systems and routers. This protocol is the ISO end system to intermediate system
(ES/IS) routing protocol. ISO 8208, X.25 packet layer protocol, and the mapping
defined in ISO 8878 are used to provide the connection-mode network service
(CONS). ISO 8348 addendum 2 defines the addresses used by the DNA network
layer.

13

OSI APPLICATION

I DNA APPLICATION
APPLICATION

t PRESENTATION

NAMING
SERVICE

DNA

SESSION CONTROL SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

figure 8 The Lay ers of DNA [DEC87]

The DNA transport layer employs ISO 8073, which includes Class 4 of the
ISO transport protocol. Classes 0 and 2 are provided for use over the CONS.
ISO 8072 provides the ISO transport service to a DNA application.

The DNA session control layer provides the logical links or connections
used by the application. This protocol is proprietary and is used to provide
upward compatibility to applications being migrated from DECnet Phase IV to
DECnet Phase V. All Phase IV DNA applications will continue to run on Phase
V without modification.

The DNA application layer supports a number of application protocols.
The data access protocol (DAP) is provided for accessing and transferring files in
a heterogeneous DECnet network. The network virtual terminal (NVT) service is
provided to offer standard terminal services and device independence. The
Mail-11 protocol is used to provide personal electronic mail capability. A rich set
of applications protocols is provided for communicating with systems that conform
to IBM's systems network architecture (SNA). VMS services for MS-DOS is a
VAX-based remote file server that gives applications running under Microsoft's
MS-DOS operating system access to files on a DEC computer system. The
Digital time service defines an architecture for providing and maintaining correct
time in a distributed system. VAX notes computer conferencing allows users of a
DNA network to participate in round-table discussions. VAX system performance

14

monitor (VAX SPMtm) allows a member of a VAXClustertm to communicate with
all other members of the cluster. VAX VTXtm is an application that provides a
computer-based electronic retrieval system, which uses a hierarchical arrangement
of information and is video terminal based. VAX distributed queuing service
(DQS) allows users to queue print jobs on remote systems connected on the same
DNA network. The remote system manager (RSM) is used to aid in the
management of distributed DEC VMS and ULTRIX systems.

The DNA OSI session layer is not yet specified. When they are specified
by the OSI, it is anticipated that the standard will be implemented in an update to
DECnet Phase V.

The DNA OSI presentation layer is not yet specified. When they are
specified by the OSI, it is anticipated that the standard will be implemented in an
update to DECnet Phase V.

The DNA OSI application layer contains many application service elements
(ASE) for which many are currently under development. The association control
service element (ACSE) is used to establish associations between applications to
be used for the purposes of exchanging information. File transfer, access, and
management (FTAM) services define services that facilitate file transfer, read,
write, modify, creation, deletion, and attribute modification over the network.
Virtual terminal (VT) services are similar to the facilities provided by the
previously described DNA NVT service.

2.2.3.1.4 SAFENET

The process of developing standards to meet a wide variety of user needs is
a very laborious and time-consuming task. The Navy has determined that the
development of the ISO OSI reference model is taking too much time.
Therefore, the Navy has decided to adopt standards based on the OSI model
called SAFENET I and SAFENET II. The SAFENET (survivable adaptable fiber
optic embedded network) standards have been developed by committee with
industry and Navy participation. This group is known as the SAFENET working
group. SAFENET is a set of standards (a subset of the OSI standard) including
additional implementation agreements required to ensure interoperability
[GRE89]. SAFENET I is to be specified in MIL Handbook MCCR 0034 (draft)
and was delivered to its sponsor, SPAWAR 324, in January 1990. SAFENET II is
to be specified in MIL Handbook MCCR 0035 (draft) and was delivered to the
same sponsor in January 1991.

The seven layers of the ISO model can be related to the SAFENET layers.
The ISO layers are specified at too high a level to allow a complete
implementation at this point in time. The DNA model could not specify the
session and the presentation layers for this reason. The SAFENET layers,
however, are specified in sufficient detail to allow full implementation at this
time. Figure 9 depicts the protocol profile for SAFENET I [SAF901] and

-15-

Figure 10 depicts the protocol profile for SAFENET II [SAF902]. The mapping
between the seven layers of the ISO model and the corresponding SAFENET
layers can be seen in Figure 11.

ISO LAYERS

6

5

4

3

2

1

MAP APPLICATION
INTERFACE

SAFENET USER
LIGHTWEIGHT

FTAM
ACSE

PRESENTATION
LAYER

SESSION
LAYER

APPLICATION
INTERFACE

LIGHTWEIGHT

SUPPORT

SERVICES

TRANSFER SERVICES INTERFACE

ISO CO
TRANSPORT

ISO ÖL-
TRANSPORT

CONNECTIONLESS
NETWORK
PROTOCOL

EXPRESS

TRANSFER

PROTOCOL

LOGICAL LINK CONTROL

IEEE 802.5 TOKEN RING

LOCAL AREA NETWORK

SAFENET THBE^lmcTl^RFÄCE

SAFENET PHYSICAL MEDIUM

SAFENET

USER

SERVICES

*
SAFENET

TRANSFER

SERVICES

*
SAFENETI

LAN SERVICES

igure 9 SAFENET I Protocol Profile [SAF901]

SAFENET specifies three protocol suites, the ISO suite, the lightweight
suite, and the combined suite. The ISO suite is used to maximize interoperability
when dealing with heterogenous systems on the same network. It also provides a
rich set of application layer services. In real-time embedded systems, however,
this extra functionality usually indicates high and unwanted overhead. Therefore,
SAFENET also provides a lightweight protocol suite to remove the unwanted
overhead, yet includes enough services to provide the necessary functionality to
build distributed systems with minimal communication latency. The combined
suite incorporates both the ISO suite and the lightweight suite to provide all
capabilities in one suite.

16

ISO LAYERS

7

6

5

2

1

SAFENET USER

MAP APPLICATION
INTERFACE

FTAM
ACSE

PRESENTATION
LAYER

SESSION
LAYER

LIGHTWEIGHT
APPLICATION
INTERFACE

LIGHTWEIGHT

SUPPORT

SERVICES

TRANSFER SERVICES INTERFACE

ISO CO
TRANSPORT

ISOCL
TRANSPORT

CONNECTIONLESS
NETWORK
PROTOCOL

EXPRESS

TRANSFER

PROTOCOL

LOGICAL LINK CONTROL

FDDI TOKEN RING

LOCAL AREA NETWORK

SAFENET PHYSICAL MEDIUM

SAFENET

USER

SERVICES

i
SAFENET

TRANSFER

SERVICES

*
SAFENET II

LAN SERVICES

Figure 10 SAFENET U Protocol Profile [SAF902]

The application process portion of Figure 11 refers to the Navy's
commitment to ensure support of applications written in Ada. This does not
preclude applications written in other languages, only that the use of Ada is a firm
requirement of DoD and must be addressed. This is not a formal layer of the
SAFENET definition. It is shown here to clarify the Navy's view of Ada on
distributed systems.

The operating system portion of Figure 11 refers to a current effort being
pursued by a subcommittee of the NGCR program. The definition of this layer is
crucial in that it is here where design decisions concerning the distribution
methodology of Ada is implemented. This is not a formal layer of the SAFENET
specification. It is an approach which some segments of the Navy are considering
for implementing Ada on loosely coupled systems.

The SAFENET ISO protocol suite user services encompass the ISO
application, presentation, and most of the session layers. The protocol is based on

17

* APPLICATION
PROCESS

* OPERATING
SYSTEM

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

SAFENET USER

MAP APPLICATION
INTERFACE

FTAM
ACSE

PRESENTATION

LAYER

SESSION
LAYER

LIGHTWEIGHT
APPLICATION

INTERFACE

LIGHTWEIGHT

SUPPORT

SERVICES

TRANSFER SERVICES INTERFACE

ISO CO

TRANSPORT

ISOCL

TRANSPORT

CONNECTIONLESS
NETWORK
PROTOCOL

EXPRESS

TRANSFER

PROTOCOL

LOGICAL LINK CONTROL

FDDI TOKEN RING

LOCAL AREA NETWORK

SAFENET PHYSICAL MEDIUM

* OUTSIDE OF THE SCOPE OF THE ISO MODEL

Figure 11 ISO Model to SAFENET Protocol Suite Mapping

the manufacturing automation protocol (MAP), version 3.0. MAP defines many
of the upper layer OSI services that are not yet fully defined. In general, MAP
3.0 defines protocols for association establishment, data transfer, file handling,
and directory services. MAP 3.0 definitions include the following:

FTAM, the services used for file handling
directory services
ACSE, the services used for association establishment

18-

presentation layer protocol
session layer protocol
Private communications application interface specification
Application interface support functions
Connection management interface specification
FTAM application interface specification

The lightweight application interface requirements are briefly, if not inadequately,
described in [SAF901] and [SAF902] section 6.2.

The SAFENET ISO protocol suite transfer services encompass the
remainder of the ISO session, the transport, network, and part of the data link
layers. The connection-oriented transport protocol is based on ISO 8073,
transport protocol class 4 (TP4). The SAFENET lightweight protocol suite
transfer services is implemented in accordance with the express transfer protocol
.(XTP) definition [XTP90]. The ISO connectionless (CL) transport protocol is
implemented in accordance with ISO 8602. The CL transport protocol is
applicable to single segment LANs only. Multicast transfer has not been defined
to date but is a requirement by the SAFENET user interface. The ISO
connectionless-mode network protocol is implemented in accordance with ISO
8473. Network layer address formats are implemented in accordance with
addendum 2 of ISO 8348. ISO end system/intermediate system (ES/IS) intra-
domain routing protocol is used. The IEEE logical link control (LLC) protocol is
employed in accordance with IEEE 802.2. The sub-network access protocol
(SNAP) is employed in accordance with IEEE 802.1 A

The SAFENET local area network services encompass the remainder of the
ISO data link, and the physical layers. These services differ for SAFENET I and
SAFENET II. The token-ring medium access control (MAC) protocol specified
by IEEE 802.5 with options (addendum C) plus ring hop is used for SAFENET I.
The fiber distributed data interface (FDDI) MAC protocol specified by ISO 9314-
2 is used for SAFENET II.

2.3 Distributed System Software Requirements

Services are required to enable software to utilize the full processing
potential of distributed systems. The service requirements of a system are
dependent on the architecture of the distributed system. The distributed system
hardware architecture conformance types were depicted in Table I.

Specific service primitives are not necessarily appropriate over all
architecture conformance types. By way of illustration, consider the two following
general classes of service:

1. Synchronization
2. Message transfer.

19

For synchronization, the semaphore, monitor, Ada rendezvous, and activity
management services are considered. For message transfer, read/write primitives,
datagrams, acknowledged datagrams, reliable messages, and broadcast datagrams
are considered. Table III characterizes the appropriateness of these various
services with respect to system architecture.

Table III Distributed Software Service Requirements

Conformance Type

0 1 2 3 4

Synchronization:

Semaphore X X X

Monitor X X X X

Rendezvous X X

Activity X X

Message Transfer:

Read/Write X X X

Datagram X X

Acknowledged Datagram X*

Reliable Message X

Broadcast X*

* Well suited for this mechanism

It can be seen by analyzing Table m that some services are inappropriate
for some architectures. Of particular interest is the Ada rendezvous which is
appropriate for uniprocessor and multiprocessor systems with shared memory.
Conformance level 3 very effectively supports acknowledged datagrams and
broadcast. When dealing with systems that involve store-and-forward message
transfer such as multi-segmented LANs or WANs (wide area networks), other
mechanisms not directly supported by Ada runtimes are more appropriate, such as
unacknowledged datagrams and reliable messages (virtual circuits). Another
mechanism that is very useful and often required in some distributed systems is
the broadcast datagram. This concept is not directly supported by Ada or most
WAN protocols.

20

3 TYPES OF DISTRIBUTED SYSTEMS WITH ADA

In light of the discussions in section 2 covering the architectures of
distributed systems, this section will discuss the similarities, variations, and
characteristics of distributed systems with Ada from the perspective of software.

3.1 Distributed Ada System Models

There are basically two ways in which an Ada program is distributed across
a number of processors [RAB90]. The first way is to conceptually place a single
Ada application across the entire suite of processors. In this model, the unit of
separation may be the Ada task, package, subprogram, or any unit depending on
the desired distribution complexity. The Ada programming language reference
manual, ANSI/MIL-STD-1815A states in a note that "parallel tasks ... may be
implemented on multicomputers, multiprocessors, or with interleaved execution on
a single physical processor." [LRM83, p. 9-1]. The unit of parallel execution may
be a task, but is in fact, arbitrary and unique to each implementation of Ada.
The high-level constructs offered in the Ada language must be partitioned onto
physical processors either through automatic selection or selection by the systems
programmer. This step can be performed independently of normal software
development, thus allowing the language to be fully utilized in its support for good
software engineering practices. Conceptually, the main program unit serves as the
root task in the tree of tasks that may compose the context of the distributed
application. The details of the mechanisms used for task synchronization and data
communication are integral parts of the Ada runtime kernel and are invisible to
the applications programmer.

The second model used to distribute Ada programs is to place one or more
Ada programs on each processor. An external mechanism is employed to provide
program synchronization and data communication. The Ada runtime generally
does not support any of the communication mechanisms directly. Mechanisms are
provided externally to the language through packages and subprograms. The job
of providing interprogram communication of data and synchronization is the
responsibility of the system designer. The mechanisms used for program
synchronization and data communication are not integral parts of the Ada
runtime and are not invisible to the applications programmer.

3.1.1 Ada on Multiprocessor Systems

Multiprocessor systems have been described as providing a number of
processors attached to a common backplane or memory bus. It is usually the case
where all of the processors are alike (homogeneous), that is, identical in
architecture and instruction set. Global memory can be attached to the common
backplane and accessed by all of the processors. It is possible for all of the
processors to share data by placing the data in a mutually agreed upon address in
global memory. This type of system lends itself well to incorporating the
techniques described in the first model of distributed Ada programs [CH089]

-21-

[LIN89] [ELL89] [BAM88] [VAN89] [BAK86]. With minimal changes required to
be made to the Ada runtime, which normally executes parallel tasks in interleaved
fashion on a single processor, the runtime can now support execution of tasks
across the entire set of processors. The following system features are required to
minimize, if not eliminate, compiler modifications and minimize runtime
modifications [LIN89]:

Any data shared by tasks running on separate processors
must be placed in globally accessible memory.
Transparent memory bus arbitration is also required to avoid
modifying the Ada compiler.
An atomic test-and-set instruction, or equivalent, to be used
for mutual exclusion.
A mechanism to allow processors to interrupt each other.
This requirement is used to implement cross processor
rendezvous.

• " A mechanism to identify and distinguish between processors.
This requirement is used to organize data structures specific
to a particular processor.
A set of timers that all processors can read and set. This
requirement simplifies the implementation of the delay
statement and package CALENDAR.

The above requirements are essential to implement the Texas Instruments
Multiple Processor Ada Runtime (TI MPAR) system.

Selecting the processor on which to execute a task may be determined at
program bind time [JHA89] or automatically and dynamically [LIN89] by the
kernel of the Ada runtime. The latter has the advantage of possibly incorporating
a dynamic load-balancing algorithm to insure peak execution performance
regardless of changing execution conditions.

In the case of the Navy's Futurebus+ heterogeneous multiple processor
configurations, a number of complications are introduced. The processors are not
alike, therefore, it is more difficult to develop an Ada compiler and supporting
runtimes across the entire suite of processors. In fact, there are a limited number
of compiler vendors that produce a single compiler, which targets a number of
different processors. In those cases where a single compiler does target a number
of different processors, the runtimes for each targeted processor are unique and
do not incorporate the necessary mechanisms to interoperate, such as support for
heterogeneous cross processor rendezvous.

The problem of data representation at the machine level complicates
matters. One cannot simply share global data in commonly addressable memory
without consideration of the cooperating target processors. Byte ordering between
processors may differ. For instance, the VAX is a little endian processor
[TAN88] and the other five processors being prototyped by the Navy are

-22-

configured as big endian. If the intent is to have data shared in commonly
addressable memory, the data producing processor, or the data consuming
processor, or both would have the responsibility of converting the data.
Mechanisms such as the Sun external data representation (XDR), the ISO model's
abstract syntax notation 1 (ASN.l) [TAN88], or a unique conversion process,
could be used to convert the data from one processor's representation to the
other processor's representation, or to a mutually agreed upon neutral
representation. This would require shadowing the global data with an analogous
data structure in the agreed upon representation, thus, multiplying the memory
requirement for sharing data by the number of processors requiring different
representations. To make all of these presentation issues invisible to the
applications programmer would require extensive modifications to the Ada
runtime. Along with the invisibility would come questions from the systems
designer of what effect the associated overhead would have on performance.

When building a large embedded distributed system, the system designer
does not want to consume time developing or modifying the Ada compiler or
runtime. It is the desire of the system designer to implement the application
without distractions [VAN89]. It has been suggested that a multiprocessing
support kernel can be built external to the Ada runtime. This would provide a
timely solution that is more economical, and thus feasible as a short-term
alternative.

3.1.2 Ada on Moderately Coupled Systems

Moderately coupled systems do not have shared memory. This makes it
more restrictive in the use of Ada tasking in that a programming discipline must
be enacted to disallow the use of data objects shared by tasks that may run on
separate processors. Enforcement of such a programming system would, in effect,
allow a subset of Ada to exist. This would be an undesirable effect and invalidate
the Ada compiler being used. Mechanisms could be employed to share data and
synchronize actions through communications protocols over the backplane or
single segment LAN. These mechanisms are similar to those that would be
necessary to implement on a loosely coupled system and will be discussed in more
detail in the section 3.1.3.

An Ada runtime was modified for the Hypercube (homogeneous
moderately coupled) system [CLA89]. All communication between tasks was
accomplished via a message-based approach utilizing the system's existing store-
and-forward communication facilities. The allowed units of distribution were
library packages and library subprograms. Tasks declared within a library package
were also allowed to be distributed. Nested tasks are restricted to execute on the
same processor as the parent task. It was determined that the limitations on the
allowable distributable units greatly effects the requirements (overhead) of the
Ada runtime system (i.e., less restrictions implies greater runtime overhead).

-23

3.1.3 Ada on Loosely Coupled Systems

Loosely coupled systems have been described as containing many
processors that do not share global memory nor a single interconnect medium
(i.e., a common backplane bus or single segment LAN). Moreover, they employ
store-and-forward with the attendant delays. The mechanism employed to share
data and to synchronize actions is implemented through communications
protocols.

The Navy's NGCR effort has clearly identified SAFENETI and
SAFENET II as the networking standard to be used in future systems.
SAFENET is applicable to all shipboard, aircraft, and landbased interconnection
problems, with either OSI standard compatibility or real-time data transfer
requirements [SAF901] [SAF902].

For most Navy applications, the communication protocols are implemented
on multiple LANs. It is increasingly becoming the case where the processing units
connected to the same LAN are not alike. Commonly addressable memory is not
available to the cooperating processors. This type system does not lend itself well
to incorporating the techniques described in the first model of distributed Ada
programs.

Some additional general considerations for Ada compiler and runtime
modifications to support this first model of a monolithic Ada program across
heterogeneous processors are summarized in Table IV. An Ada development
system would need to be evolved to support program development that targets all
heterogeneous processors of interest. There are two basic approaches that can be
taken to accomplish this. In the first approach, a single Ada compiler can be
developed to support multiple back-ends and runtime systems that target each
processor. In the second approach, separate existing Ada compilers, that are
hosted on different processors and separately target all processors of interest,
could be modified to support a single program library that all compilers store
information and object code in. Tools would have to be developed that can
extract the appropriate object modules from the program library to link and
download executable modules to all targeted processors. The program library
would have to support uniform analogous data types across all processors to
overcome the compiler differences, some of which are summarized later in
Table V of section 4.1.4. Code would have to be generated to convert data,
where necessary, that are communicated across processor bounds in support of
remote object references, remote subprogram calls, and remote entry calls.

Runtime environments targeted for each processor would have to be
developed/modified to support the level of desired distribution. Restrictions on
the level of distribution would have a large effect on the resulting runtime
overhead (i.e., greater distribution flexibility would result in larger runtime
overhead and size). Mechanisms within the runtime are required to support
memory management, time management, tasks, and exceptions. Other

-24-

Table IV Ada Runtime Modification Requirements

Ada Development System An Ada compiler that targets multiple
processors accompanied by tools for
linking, downloading, executing, and
debugging;
or,
Multiple Ada compilers that can share
information through a common program
library to support interface and type
checking.

Units of Distribution Restrictions must be determined on
allowable Ada units of distribution.

Memory Management A mechanism is required to support the
•shared-memory model of Ada.

Time Management A mechanism is required to support
global time of day as well as delays.

Task Communication A mechanism is required to support the
communication of data between tasks
running on distributed heterogeneous
tasks.

Task Activation and
Termination

A mechanism to support the activation
and termination of distributed tasks.

Task Scheduling A mechanism to support the scheduling
of tasks.

Exception Handling and
Propagation

A mechanism to support the handling
and propagation of exceptions across
processor bounds.

Other Support for interrupts, I/O, predefined
packages, generic units, and compiler
attributes.

mechanisms are needed to support processor interrupts, I/O, predefined packages,
generic units, and compiler/processor independent/dependant attributes.

It is not impossible, however, to implement the first model for
homogeneous processors as suggested by Brennan [BRE89]. This model would
leave the detail of distribution mostly invisible to the applications programmer. It
may require extensive modifications, depending on the desired level of

-25-

distribution, to the Ada runtime to support a distributed network of homogeneous
processors. To support a distributed network of heterogeneous processors would
require an even greater effort determined by the number of unlike cooperating
processors. The addition of presentation layer services to accommodate
heterogeneous processors was briefly mentioned in Brennan's model and not
included in his proposed communications kernel. One consideration would be to
standardize the communications kernel such as that suggested by Brennan within
the Ada runtime. This could make it possible for the products, in particular Ada
runtimes, of many Ada vendors to interoperate.

Clearly, a lot of effort would have to go into the design, development, or
modification of the Ada compiler, program library, support tools, and runtime
environment to overcome the requirements needed to support this model of
distribution.

The second model used to build distributed systems with Ada is much
more practical when dealing with loosely coupled heterogeneous systems. The
external mechanism used to provide the distributed functionality can simply be an
Ada package. This package can be an interface to a standard network protocol
[RAB89] [RAB90] [STE88] [STE89]. In this way, distributed architectures and
systems of the past can be migrated into Ada with minimal, if any, changes to the
Ada runtime. Some of Ada's tight type checking is lost across heterogeneous
processor (program) bounds, however.

The following requirement is needed to ensure an interface that mates well
with the semantics of Ada:

The Ada runtime must be capable of suspending a task that
is waiting for I/O, and must also be capable of resuming the
task upon completion of the I/O if the task has the highest
priority [RAB90]. The task is marked ready to run otherwise.

Frequently, implementations of Ada do not provide a program asynchronous task
synchronous (PATS) I/O capability. Because of this, when an I/O function is
called, the entire Ada task tree is blocked. Clearly, this is an undesirable side
effect and leads system designers and programmers to solutions which do not
involve Ada tasks. What is needed is the capability for just the task to block that
is calling a blocking network message passing primitive. The Ada runtime would
then schedule other tasks to run while waiting for the I/O to complete. Upon
completion of the message passing primitive, the calling task would be
preemptively rescheduled to run if the currently running task is of lower priority.
If the currently running task is of equal or higher priority, then the task would
wait its turn to run (this is dependent on the scheduling algorithm employed).
Higher levels of inter-processor communication such as remote procedure calls
(RPC) can be built on top of this message passing mechanism.

26

VAX Ada provides a package called TASKINGSER VICES that provides
a PATS implementation of most of the system services of VMS, that cause a VMS
process to block. The underlying blocking VMS system service used for I/O is
the QIOW (queue an I/O request and wait). Through the use of the Ada
procedure TASKINGSERVICES.TASKQIOW, only the calling task blocks, not
the entire VMS process. This technique was employed by the author in the
implementation of an Ada interface to DECnet in the package DECnetIO
[STE88] and led to desirable results. This technique was not employed, however,
to an Ada interface to TCP/IP in the package TCP_IO [STE89] and led to the
undesirable results described above. These problems were averted through an
implementation modification to the package body of TCPJO for the purposes of
this report (use of the procedure TASKING_SERVICES.TASK_QIOW was
employed) to gain the desired PATS functionality.

In light of this analysis, it is recommended that the most cost effective and
timely solution to developing distributed heterogeneous systems in Ada, for the
near future, would be to use single Ada programs that communicate with each
other through a well-defined standard network interface in the form of an Ada
package. Section 4 will illustrate this technique by describing two such packages
implemented on heterogeneous systems.

27

4 PROGRAMMING TECHNIQUES

Application programming techniques are not much of an issue when
distributed execution is handled invisibly by the Ada runtime. An application
programmer does not worry about distribution or specifies the distribution later,
at system bind time. In the case where this is not so, all of the responsibility of
distribution lies on the system designer and programmer. This section identifies
techniques that aid the programmer in developing distributed Ada programs in a
consistent fashion.

4.1 A Network Interface

This section will discuss two Ada interfaces to the TCP/IP network
protocol. One interface was developed as part of the Advanced Combat System
Interactive Design Laboratory (ACSIDL) which was developed at the Naval
Underwater Systems Center (NUSC) in Newport, Rhode Island [STE89]. The
second interface was developed for the purpose of illustrating the conclusions of
this study.

The need for the first interface to the TCP/IP network protocol stemmed
from a requirement to develop a distributed simulation involving heterogeneous
processors. The simulation was to be coded in VAX Ada on a VAX/VMS
computer system. The VAX was chosen for its production quality Ada compiler
and mature software development tools. The rational for this decision was to
help reduce the risk of implementing a large piece of code in Ada by a team of
designers and programmers new to the language. The display systems that were
employed for the man-machine interface which were used to observe and
manipulate the simulation where Silicon Graphics Iris Workstations. The Iris was
chosen for its superior graphics handling capabilities. All systems involved were
connected to a common Ethernet cable. Each system supported the TCP/IP
network protocol. The TCP/IP network protocol was fortunately designed with
heterogeneity in mind.

The second interface was developed on a Sun workstation to illustrate the
points and considerations being discussed in this report. An attempt was made to
develop the interface on the Silicon Graphics Iris workstation, but this attempt
was unsuccessful because of the immaturity of the MIPS Ada compiler. The
MIPS Ada compiler used the Verdix Ada compiler front end, together with a
MlPS-developed code generator, and Ada runtime. I decided to develop the
interface on the Sun workstation as an alternative due to the similarities of the
underlying data representations used on both the Sun and Iris workstations. The
Verdix Ada compiler hosted on and targeted for the Sun workstation was used for
the implementation of this network interface. The interface for the most part is
identical in the functionality provided to that of the interface developed on the
VAX.

28-

The VAX and Sun systems have some fundamental differences in
architecture that had to be contended with. The VAX is a little endian system,
which implies that its bytes are numbered with byte 0 being the low-order
rightmost byte, whereas the Sun is a big endian system, which implies that its
bytes are numbered with byte 0 being the high-order leftmost byte [TAN88]. In
addition, the VAX uses a proprietary F_FLOATING single-precision floating-
point representation, whereas the Sun uses a standard IEEE single-precision
floating-point representation. The low level representation of system time
differed on both systems. However, both systems use ASCII character and string
representation and the same bit representation for integers.

The interface is implemented as an Ada package called TCP_IO on the
VAX and TCPIO on the Sun. The set of primitives make up a subset of the
primitives available in a full TCP/IP implementation. The primitives do,
however, provide all of the functionality needed to perform reliable connection-
oriented message transfers.

4.1.1 TCP_IO Interface Primitives

The following is a list of primitives contained in the VAX-based package
TCP_IO. The list briefly describes the functionality of each primitive along with
its Ada interface. The primitives represent a subset of all primitives available in
most implementations of TCP/IP. Those that provide virtual circuit capabilities
were implemented.

Socket This procedure is used to create a socket that is an
end point for communication.

procedure SOCKET (
S : out integer; -- socket
DOMAIN : in integer; -- communications domain
S TYPE : in integer; -- communication semantics
PROTOCOL : in integer); -- specifies a particular protocol

Bind This procedure is called after a socket has been
created. Bind assigns a port name or number to be
used as a reference by other processes on the network.

procedure BIND (
STATUS : out integer; -- return status
S : in integer; -- socket
NAME : in SOCKADDRS; -- name to assign to socket
NAMELEN : in integer); - - length of name

Connect This procedure called by a process to establish a
connection to a remote process. The node name and
the port name or number used in the BIND call by
the remote process is used in this call.

-29-

procedure CONNECT (
STATUS : out integer;
S : in integer;
NAME : in SOCKADDRS; -
NAMELEN : in integer); -

- return status
- socket
- remote socket name
- name length

Listen This procedure determines the allowable backlog of
incoming connection requests.

procedure LISTEN (
STATUS
S
BACKLOG

out integer;
in integer;
in integer); -

- return status
- socket
- max length of queue of pending
- connections

Netclose This procedure is used to close a socket and end the
communication session.

procedure NETCLOSE (
S : in integer); -- socket

Netread This procedure is used to read messages from a socket
that has been connected to another socket.

procedure NETREAD (
CC : out integer;
S : in integer;
BUF : in SYSTEM.address; -
NBYTES : in integer);

- return length
- socket
- buffer address
- buffer length

Netread_Buffered This procedure is used to buffer successive
NETREADs to result in a message of user-specified
length. A producer process may send a message of
greater length than is received by NETREAD.
Therefore, multiple NETREADs must be performed
by the consumer process. This procedure hides the
details of this operation.

procedure NETREAD_BUFFERED (
CC
S
BUF
NBYTES

Netwrite

out integer;
in integer;
in SYSTEM.address; -
in integer);

- return length
- socket
- buffer address
- buffer length

This procedure sends a message on the specified
socket.

30-

procedure NETWRITE (
CC
S
BUF
NBYTES

out integer; -- return length
in integer; -- socket
in SYSTEM.address; -- buffer address
in integer); -- buffer length

Rhost This procedure is used to look up an internet host by
name and return a 32-bit internet address.

procedure RHOST (
IADDR : out integer; -- 32-bit internet address
ANAME : in out string); -- host name

TCP_Accept This procedure is used to accept inbound connection
requests from a socket. It returns a new socket to be
used in communicating to the requesting process.

procedure TCP_ACCEPT (
NS
S
ADDR
ADDRLEN

out integer; -- new socket returned
in integer; -- socket

out SOCKADDRS; -- address of the connecting entity
out integer); -- length of address returned

Put_Bin Two overloaded procedures used to print the binary
values of integers or 32-bit array types to the screen.
These procedures are predominantly used for
debugging.

procedure PUT_BIN (
BUFFER : in integer);

procedure PUT_BIN (
BUFFER : in SYSTEM.BIT_ARRAY_32);

Htons This function converts the host byte ordering to
network byte ordering for a two-byte word.

function HTONS (BUFFER : in short_integer)
return short_integer;

Htonl This overloaded function converts the host byte
ordering to network byte ordering for a four-byte long
word.

function HTONL (BUFFER : in integer)
return integer;

function HTONL (BUFFER : in SYSTEM.BIT_ARRAY_32)
return SYSTEM.BIT ARRAY 32;

-31

4.1.2 Package VAXIEEE

The package VAX_IEEE was written to deal with the architectural and
data representation differences between the VAX and Sun computer systems. In
a sense, this package can be viewed as providing the presentation layer services
needed for this application. The design decision was made to perform all data
representation conversions on the VAX. This was done to make all data
representation issues completely invisible to the man-machine interface system
designers and application programmers utilizing the Sun (and the Iris in the case
of ACSIDL) system. All responsibility was assumed by the system designers and
application programmers implementing the simulation that utilized the VAX
system.

The following is a list of primitives contained in package VAXIEEE. The
list briefly describes the functionality of each primitive along with its Ada
interface.

Convert_IEEE Float_To_VAX_On_VAX This function converts the
float bit representation of IEEE single-precision
floating point numbers to the bit representation of
VAX F_FLOATING single-precision floating point
numbers.

function CONVERT_IEEE_FLOAT_TO_VAX_ON_VAX (
BUFFER : in SYSTEM.BIT_ARRAY_32)
return float;

Convert_VAX Float To_IEEE_On_VAX This function converts the
float bit representation of VAX F_FLOATING single-
precision floating point numbers to the bit
representation of IEEE single-precision floating point
numbers.

function CONVERT_VAX_FLOAT_TO_IEEE_ON_VAX (
BUFFER : in float)
return SYSTEM.BIT_ARRAY_32;

LIB_DAY This procedure returns the number of days since the
system zero date of 17 November 1858, or the number
of days from system zero date to a user supplied date.
This is a direct interface to the VAX/VMS operating
system runtime library routine LIB$DAY.

procedure LIB_DAY (
DAY_NUMBER
USER_TIME
DAY TIME

out integer;
in CALENDAR.TIME;

out integer);

32

Get_Integer_Time This function converts a time value into an
integer value, which represents the number of seconds
from base time 1 January 1988.

function GET_INTEGER_TIME (
TIME : in CALENDAR.TIME)
return integer;

4.1.3 TCPIO Interface Primitives

The following is a list of primitives contained in the Sun based package
TCPIO. The list briefly describes the functionality of each primitive along with its
Ada interface. The primitives in this package are similar to the primitives in the
VAX based package. The differences are due to the differing methods used to
facilitate the pragma INTERFACE in both compilers. The Verdix compiler only
allows parameters of mode "in". All parameters must be 32 bits in size.

Socket This function is used to create a socket that is an end
point for communication.

function Socket (
Domain : in integer; - - communications domain
S Type : in integer; - - communication semantics
Protocol : in integer) -- specifies a particular protocol
return integer; - - socket

Gethostbyname This function is used to look up an Internet
host by name and return information about the name
including a 32-bit Internet address.

function Gethostbyname (
Name : in string) -- host name
return H0STENT_PTR; -- host name record including address

Bind This function is called after a socket has been created.
Bind assigns a port name or number to be used as a
reference by other processes on the network.

function Bind (
S : in integer; -- socket
Name : in SOCKADDRS_PTR; -- name to assign to socket
Namelen : in integer) -- length of name
return integer; -- Status

Listen This function determines the allowable backlog of
incoming connection requests.

33

function Listen (
S : in
Backlog : in
return integer;

integer; -
integer) -

- socket
- queue length
- status

Connect This function called by a process to establish a
connection to a remote process. The node name and
the port name or number used in the BIND call by
the remote process is used in this call.

function Connect (
S : in integer;
Name : in SOCKADDRS_PTR;
Namelen : in integer)
return integer;

- socket
• - remote socket name
■ - name length
■- status

TCP_Accept This function is used to accept inbound connection
requests from a socket. It returns a new socket to be
used in communicating to the requesting process.

function TCP_Accept (
S : in integer;
Addr : in S0CKADDRS_PTR;
Addrlen : in ADDRLEN_PTR)
return integer;

- socket
•- remote address
• - address.length
■- status

Recv This function is used to perform an unbuffered read of
a message from a socket that has been connected to
another.

function Recv (
S : in
Buf : in
Len : in
Flags : in
return integer;

integer;
SYSTEM.address;
integer;
integer :- 0)

- socket
■- buffer address
- buffer length
■ - flags
■- return length or status

Send This function is used to perform an unbuffered write
of a message to a socket that has been connected to
another.

function Send (
S : in
Msg : in
Len : in
Flags : in
return integer;

integer;
SYSTEM.address;
integer;
integer :- 0)

- socket
- buffer address
- buffer length

■ - flags
■- return length or status

Close This procedure is used to close a socket and end the
communication session.

34

procedure Close (
S : in integer); -- socket

Netread This function is used to read messages from a socket
that has been connected to another socket.

function Netread (
S : in integer; -- socket
Buf : in SYSTEM.address; -- buffer address
Nbytes : in integer) -- buffer length
return integer; -- return length or status

Netwrite This function sends a message on the specified socket.

motion Netwrite (
S : in integer; -- socket
Buf : in SYSTEM.address; -- buffer address
Nbytes : in integer) -- buffer length
return integer; -- return length or status

Netread_Buffered This function is. used to buffer successive
NETREADs to result in a message of user-specified
length. A producer process may send a message of
greater length than is received by NETREAD.
Therefore, multiple NETREADs must be performed
by the consumer process. This function hides the
details of this operation.

function Netread_Buffered (
S : in integer; -- socket
Buf : in SYSTEM.address; -- buffer address
Nbytes : in integer) -- buffer length
return integer; -- return length or status

Perror This procedure prints the actual error message to
standard output. This procedure is usually called after
a status of -1 is returned from other TCPIO primitives.

procedure Perror (
S : in string); -- error string

4.1.4 Compiler Differences

There are differences evident in the implementations of the network
package interfaces described in the sections above. Part of this is because the
TCP_IO interface developed for the VAX was completed before knowledge of the
Sun Ada compiler existed. Pragma INTERFACE for the VAX Ada compiler can
support all possible parameter passing mechanisms (value, reference, string
descriptor) and modes (in, out, in out), whereas the Verdix Ada compiler on the

-35-

Sun and the MIPS Ada compiler on the Iris (an interface was attempted on this
system without success because of compiler bugs) support only pass by value of
mode IN and each parameter is limited to a 32-bit size. Had this been known
from the beginning, some careful design of the network package interface on each
system could have possibly resulted in an identical interface.

Support for the built-in data types by Ada in package STANDARD on
each system, also contained some fundamental differences. The preferred method
used to deal with this problem is to define a portable derived type for all required
types and refrain from using the predefined types. The following type declaration
is an example of a portable derived type:

type MY_FLOAT is new float;
--or
type MY_FLOAT is new short_float;

This declaration would be the only change necessary to port the program from
one system to the next. Table V illustrates some of these differences.

Table V Ada Compiler Type Differences

Size
(bits)

VAX Ada Verdix Ada
(SUN)

MIPS Ada
(IRIS)

8 short_short_integer tiny_integer tiny integer

16 short_integer short_integer short_integer

32 integer integer integer

32 float
(FFLOATING)

short float
(IEEE)

float
(IEEE)

64 long float
(DFLOAITNG)

float
(IEEE)

long float
(IEEE)

The declarations shown in Table V would aid in making the Ada source file
portable, but would not help the situation where the distribution is provided in
the runtime. If there is no global agreement between vendors of Ada runtimes on
the textual representation of analogous data, it would be impossible to implement
distributed capability in a heterogeneous environment.

-36

4.1.5 Primitive Calling Sequence

The following sections will describe how to use the previously specified
network procedures by stating their required calling order by processes on both
sides of a communications channel. The processes can be thought of as a client
and a server. The client being the process requesting a communication
connection to a server, and the server being the process accepting incoming
communication connection requests from clients. For the purposes of this report,
the process is an Ada task and will be referred to in the following sections as
simply a task.

4.1.5.1 Server Calling Sequence

To establish a network connection between two tasks on the network, the
task must first create a TCP socket using the procedure SOCKET. This socket
can be thought of as one end of a communication channel, much like a telephone.

To enable other tasks on the network to connect to this socket, a task must
make its socket known to the network by use of the procedure BIND. This
procedure basically associates the socket with a port on the node in which the
task resides, much like publishing ones telephone number. This task will be
referred to as the server.

The server task must next specify the size of the incoming request queue
before a connection request can be accepted. This is accomplished through use of
the procedure LISTEN. This determines the number of pending incoming
connection requests allowed on the socket.

The server task must then call TCP_ACCEPT. This call will block the task
until an incoming connection request is initiated by a client for this known TCP
port. This is analogous to a person waiting for the telephone to ring. It is at this
point that I would like to reemphasize the need for a PATS implementation of
the blocking primitives such as TCP_ACCEPT. Without it, other Ada tasks
within the program would be needlessly blocked, resulting in undesirable runtime
effects.

When a request from a client task is received, a new socket (NS) is
automatically returned from TCP_ACCEPT. This is analogous to a person
answering the telephone. Bidirectional communication is now possible between
the server and client tasks over the new socket. This is analogous to two persons
holding a conversation over the telephone. This may be accomplished through
use of the procedures NETREAD, NETREAD_BUFFERED, and NETWRITE.
The old socket still exists and can be used to accept inbound connection requests
from other tasks.

37

When termination of communication is desired, the procedure CLOSE is
called to close the communications channel, much like hanging up the telephone.
The sequence of calls and their relationship in time are shown in Figure 12.

4.1.5.2 Client Calling Sequence

The client task must also create a TCP socket by calling SOCKET to
establish its end of the communication channel. The client task then requests a
connection to an existing known TCP port by calling the procedure CONNECT.
This is similar to dialing the telephone where the telephone number relates to the
network node address and port number of the server task. If an unknown node
address or port number is specified, an error condition is returned indicating that
a time-out has occurred.

TIME

CLIENT PROCESS

SOCKET (S)
CONNECT (S, SERVEFL.ADDRESS)
TASKBUSY

• • •
NET.READ (S)
NET.WRITE (S)
CLOSE (S)

SERVER PROCESS

SOCKET (S)
BIND (S, NAME)
LISTEN (S, #_OF_REQUESTS)
ACCEPT (S, NS)
TASK BLOCKED

• • •
TASK RELEASED
NET.WRITE (NS)

• • •
• • •

NET_READ (NS)
TASK BLOCKED

• • •
CLOSE (NS)
CLOSE (S)

Figure 12 TCP/IP Primitive Calling Sequence

When a successful connection is established, the client and server tasks are
able to communicate with each other. The client like the server may call
NETREAD, NETREADBUFFERED, and NETWRITE as if two people were
having a conversation on the telephone. When termination of communication is
desired, the procedure CLOSE is called to close the communications channel,
much like hanging up the telephone.

-38

4.1.6 Programming Considerations

One of the more attractive features of Ada is its tasking feature that allows
concurrent operations to take place in the context of a single program. It would
be desirable to maintain concurrent programs in such a way as to present a
seamless and coherent system. It would also be desirable to maintain the Ada
semantics of calling subprograms and task entries across program and processor
boundaries within the software system. If the interface is designed such that the
primitives execute in PATS format, then the interface can be used in conjunction
with Ada's calling semantics. TCP_IO provides a PATS interface to the network
allowing asynchronous, bidirectional communication of messages between
programs.

4.1.7 Ada Program Communication

Each pair of Ada programs or processes in a software system requiring
network communication will provide a sender task with its peer process providing
a cooperating receiver task. Both the sender and the receiver tasks will
communicate over the same network virtual circuit. The sender task will send
messages to the receiver task. For heterogeneous systems, the messages must be
converted by either the system sending the message or the system receiving the
message. If the messages are constructed as Ada variant records with a default
descriminant value, it is possible for the receiver task, upon receiving a message,
to determine the type of the incoming message. It is possible for the receiver task
to perform the appropriate action once the message type is determined.

Messages can be coded as variant record types where the discriminant
specifies the message type being sent or received as indicated previously. This
makes it possible to invoke multiple types of actions in a remote Ada program, or
process, over a single network circuit. Each cooperating network process residing
within the software system would have both a sender task and a receiver task. In
the case of the ACSIDL simulation, the Ada program performing the simulation
on the VAX contained one sender task and many receiver tasks for each process,
i.e., each Iris display system participating in the distributed application. The
single sender task would communicate with all of the remote receiver tasks by
maintaining a socket channels list containing one socket channel for each remote
receiver task. Future versions of the ACSIDL simulator are anticipated to employ
broadcast datagrams defined by user datagram protocol (UDP) (part of TCP/IP)
to implement data sharing more efficiently. It is not necessary to maintain a
single sender task, however. Many sender tasks, one for each remote process,
may be implemented. The general architecture of the sender/receiver task
communication scheme is depicted in Figure 13.

Some of Ada's strong type checking is lost in a heterogeneous environment.
The necessary type checking across processor bounds must be carefully
maintained by the developer.

39

SENDER TASK

loop
accept SEND (MESSAGE) do

case MESSAGE.KIND is
when CHOICE 1 ->

CONVERT DATA;
WRITE (CONVERTED_MESSAGE)

when CHOICE_2 ->
• • •

whenCHOICE_3->
• • •

end case;

RECEIVER TASK

Wmr READ.BUFFERED (KIND);
|§§|ll|iy§| case KIND Is
^H when CHOICE

Www*
i->

READ BUFFERED (INFO);
DO CHOICEJ (INFO);

when CHOICE_2 ->

when CHOICE_3 ->
• • •

end case;
end loop;

Figure 13 Sender/Receiver Tasks

The sender task waits to rendezvous with the application when
communication is desired. When the rendezvous occurs, the sender task
determines the message kind. This allows the sender to implicitly determine the
size of the message and the representation conversion to be performed on the
message before transmitting to the remote process. Since the Ada attribute 'size
will return the size of the largest variant of the network message, it is necessary
for the programmer to maintain the size of each variant component of the
message. This can be accomplished by specifying a separate Ada type for each
variant part. The size attribute will return the correct length of the variant
component type. This size, plus the size of the discriminant itself, determines the
size of the entire message to be sent. The network primitive NETWRTTE
contains a parameter for specifying the length of the buffer to send. Specifying
the actual length of the message (the size in bytes of the discriminant plus the size
of the type of the information field) makes it possible to optimize the use of the
network. The Ada attribute 'size applied to the variant record itself would return
the size of the largest variant. This length could be used for all variants sent over
the network and would result in correct information being received by the
receiver. But, a lot of bytes containing no information at all would be sent and
received, possibly consuming valuable network bandwidth. Once the data
representation is converted and the size is determined, the message is sent over
the network to the receiver task. The sender task then loops around and waits for
another request (rendezvous) from the application to send another message, thus
repeating the process described above.

Because TCP circuits are stream-oriented pipes used for communication,
the receiver task must operate a little differently. The receiver task will receive
the discriminant from the network using a call to NETREAD_BUFFERED
specifying a message length that is the size of the discriminant of the message.
This information determines the kind of message to follow and its implicit size.

40-

Once the kind of incoming message is determined, it is then possible for the
receiver task to read the remaining portion of the message using
NETREAD_BUFFERED by specifying a message length that represents the size
of the information field for the determined kind of message. The data
representation should be converted here if necessary, and the appropriate actions
for the message received should be executed. The receiver task then loops
around to call NETREAD_BUFFERED, again specifying a message length that is
the size of the discriminant, and repeats the entire process described above.

Since network messages are coded as variant record types (records with
discriminants), the discriminant is used to describe the type of message, and the
corresponding portion contains the information for that message kind. An
example of a network message coded in Ada is shown below.

type KINDs is (ALERT, SIGNAL, A, B, C);

type ALERTs is
record
WHICH : integer;
ACTION : ACTIONs;

end record;

type SIGNALS is
record
WHICH : integer;
ACTION : SIGNAL_ACTIONs;

end record;

subtype As is integer;

subtype Bs is float;

subtype Cs is boolean;

pe MESSAGES (KIND : KINDs :- AI ,ERT) is
record

case KIND is
when ALERT -> ALERT INFO : ALERTs;
when SIGNAL -> SIGNAL INFO : SIGNALs;
when A => A INFO : As;
when B -> B INFO : Bs;
when C -> C INFO : Cs;

end case; - - KIND
end record; -- MESSAGES

-- declare the actual network message object

NETWORK MESSAGE : MESSAGES;

-41

4.1.8 Implementation of Remote Procedure Call

Higher levels of abstraction can be placed on top of the mechanism
described in the previous section such as remote procedure call (RFC). RPC is a
mechanism widely used in the implementation of distributed systems. Even
higher levels of abstraction are placed on top of the RPC mechanism such as the
Sun network file system (NFS). In RPC the client calls a local procedure to
perform a service. The local procedure, in turn, calls another procedure, which
actually resides on another node of the network to perform the service required.
The goal of RPC is to provide the services of a procedure to a client regardless of
where the procedure actually resides. The procedure appears local to the client,
thus making the RPC mechanism transparent.

Figure 14 depicts a method that can be used to implement RPC on
heterogeneous systems using the facilities of TCP/IP through the interfaces
described in previous sections. It is shown that a client calls a local procedure,
which is labeled the pseudoprocedure. This "procedure can in fact be an Ada
subprogram (procedure or function) or an Ada task entry (which presents the
same semantics as the procedure). This provides tremendous flexibility in
implementing distributed use of all the callable facilities provided by Ada. The
job of the pseudoprocedure is to assemble all of the parameters, if any, into a
message. This operation is known as parameter marshalling [TAN88], It is then
necessary for some heterogeneous systems to convert the data in the message into
a form that is usable by the remote system. This operation is depicted by the
convert data box. The message is then handed to the sender task that was
described in the previous section. The sender calls the facilities of the network
interface (in this case TCP_IO or TCPIO) to send the message to the remote
system via a virtual circuit. It is the responsibility of the implementor of the local
procedure to provide for the desired blocking semantics. It is possible to have the
following client-pseudoprocedure calling semantics.

Local procedure returns to the client after the RPC is completed by
the remote procedure. Parameters are passed to the remote
procedure and the resulting parameters are returned. This is a fully
acknowledged semantic.

Local procedure returns to the client as soon as the message is
passed to the sender. Parameters may be passed to the remote
procedure but none are returned. There is no acknowledgment that
the remote procedure was truly called.

Local procedure returns to the client after the remote procedure is
called, but before the remote procedure completes. This provides
an acknowledgment that the remote procedure was called.

The message is received by a receiver task on the remote system through
the facilities of the network interface. The receiver task is able to determine the

-42-

CLIENT PSEUDO
PROCEDURE

SENDER
TASK

RECEIVER/
TASK

NETWORK INTERFACE

1
NETWORK

1
NETWORK INTERFACE

RECEIVER
TASK

SENDER
TASK

REMOTE
PROCEDURE

Figure 14 An Implementation of RPC in Ada

43-

message kind and thus, the actions needed to be performed as described in the
previous section. The data are converted, if necessary, to a usable form. The
remote procedure is then called. The implementor must consider whether it is
desirable to block the receiver task at this point. If this is undesirable, then an
intermediate task must be placed between the receiver task and the remote
procedure. This would allow the receiver to continue to receive incoming
messages while the RPC is being serviced. The remote procedure can be an Ada
subprogram or task entry just as the local procedure was. In fact, it would be
desirable to have a one-for-one match between pseudoprocedure and remote
procedure type. Upon completion of the service, the return parameters are
assembled into a message (parameter marshalling), which is sent back via the
sender task on the remote system.

It is possible to have many simultaneous RPCs, at various stages of
completion, in progress at any moment in time, by any two systems connected via
a virtual circuit. This is depicted by the multiple copies of the client,
pseudoprocedure, and remote procedure boxes. The call can also be made by a
client on either system to the server on the other. There is no limitation to the
possibilities offered by this mechanism. However, responsibility for all the
implementation details are not transparent and must be attended to carefully.
Tools can be developed to provide the illusion of a single Ada program running
across multiple systems. The tools would split the Ada program into multiple Ada
programs, one targeted for each node on the network. The underlying mechanism
needed to provide transparent subprogram calls or rendezvous could be
implemented using the RPC mechanism presented here. An Ada runtime written
in Ada could very well employ the mechanism described here.

-44

5 CONCLUSIONS

A taxonomy of Navy system architectures was presented showing the
requirements for support of heterogeneous systems connected in various degrees
of distribution, along with a high-level overview of processor interconnects such as
memory buses, backplanes, and networks. It was seen that backplanes can
support complex protocols that could lead one to find the backplane
indistinguishable from a LAN. This feature becomes especially important when
dealing with heterogeneous processors because the presence of shared memory
may be inefficient as a medium for sharing data between processors. This feature
would be needed for an efficient implementation of an Ada runtime across
multiple processors. Since there is a high likelihood of being unable to find an
Ada compiler vendor to support all conceivable target processors and even if so,
not providing the hooks and handles in the Ada runtimes to implement a
distributed Ada runtime across the heterogeneous suite of processors, another
method of implementing distribution should be considered in the interest of
conserving time and money in the development process. This does not mean that
a standard could not be developed specifying a uniform Ada runtime interface to
the hooks and handles needed to implement distributed Ada. Therefore, it would
be possible for multiple vendors to supply Ada compilers and runtimes for
different target processors and allow the application developer to supply the
connecting pieces to the runtimes to implement the needed distribution invisibly.
This does not, however, answer the needs of some applications that require the
full functionality of some of the network protocols that were discussed, such as
broadcast, or higher-level abstractions, such as distributed name services. The
broadcast feature is not provided by the Ada runtime and thus, would be an
extension to the language to provide a broadcast entry point call and accept. This
could, however, be solved by some of the additions that are being, or could be,
proposed by the ongoing Ada9X effort.

A matrix of services versus distributed systems architecture provided an
alternate view, which illustrated that the types of service needs differ with
distributed systems architectures. These services do not always map to the
features that are directly provided by the Ada runtime. Some of these needs
could be addressed through additions to the Ada language and runtime as
previously suggested. But, for the near future, it would be timely and fiscally
astute to provide the means for distribution through a well-defined standard
network interface (Ada package) employing the techniques described in this
report.

- 45/46 -
Reverse Blank

REFERENCES

[ALN90] Alnaes, Knut and Ernst H. Kristiansen, David B. Gustavson,
"Scalable Coherent Interface," SLAC-PUB-5184, Stanford Linear
Accelerator Center, Stanford, CA, January 1990.

[AND90] Andrews, Warren, "Futurebus+ now: Profiles Defined, Support
Expanded," Computer Design, Vol 29, No 7, 1 April 1990, pp 22 - 26.

[BAM88] Bamberger, Judy and Roger Van Scoy, "Distributed Ada Real-Time
Kernel," Proceedings of the IEEE 1988 National Aerospace &
Electronics Conference: NAECON 88, May 1988, pp 1510 - 1516.

[BAK86] Baker, T. P., and K Jeffay, "A Lace for Ada's Corset," TR 86-09-05,
Department of Computer Science, University of Washington,
Seattle, WA, 25 October 1986.

[BOR90] Borrill, Paul L., "What is Futurebus+ ?," Proceedings of the
BUSCON Conference, 14 - 16 February 1990, pp 303 - 315.

[BRE89] Brennan Jr., J. W., "Issues in the Design of Distributed Ada
Programs," Masters Thesis, University of Rhode Island, August 1989.
Also published as "Issues and Approaches in the Design of
Distributed Ada Programs," NUSC Technical Report 6834, Naval
Underwater Systems Center, Newport, RI, 11 October 1989.

[CH089] Cholerton, Andrew, "Ada For Closely Coupled Multiprocessor
Targets," TPJ-Ada '89 Proceedings, September 1989, pp 450 - 461.

[CLA89] Clapp, Russell M., and Trevor Mudge, "Ada on a Hypercube," Ada
Letters, Vol IX, No 2, 1989, pp 118 - 128.

[DEC87] "DECnet DIGITAL Network Architecture (Phase V)," Digital
Equipment Corporation, Maynard, MA, September 1987.

[ELL89] Ellis, John R, "A Periodic Ada Control Kernel (PACK)," TRI-Ada
'89 Proceedings, September 1989, pp 464 - 473.

[GRE89] Green, Daniel T. and David T. Marlow, "Application of LAN
Standards to the Navy's Combat Systems," white paper, Engineering
and Technology Division, Combat Systems Department, Naval
Surface Warfare Center, Dahlgren, VA, 1989.

47

[GUS90] Gustavson, David B., "Applications for the Scalable Coherent
Interface," SLAC-PUB-5244, Stanford Linear Accelerator Center,
Stanford, CA, April 1990.

[JHA89] Jha, Rakesh, "Distributed Ada - Approach and Implementation,"
TRI-Ada '89 Proceedings, September 1989, pp 439 - 449.

[LIE86] Liebein, Edward, "The Department of Defense Software Initiative -
A Status Report," Communications of the ACM, Vol 29, No 8,
August 1986, pp 734 - 744.

[LIN89] Linnig, Michael, and Donna Forinash, "Ada Tasking and Parallel
Processors," TRI-Ada '89 Proceedings, September 1989, pp 426 -
438.

[LRM83] "Ada Programming Language," ANSI/MIL-STD-1815A, 22 January
1983.

[RAB89] Rabbie, Harold, "An Operating System for Real-Time Ada,"
TRI-Ada'89 Proceedings, September 1989, pp 490 - 497.

[RAB90] Rabbie, Harold, "Meeting Today's Requirements With Real-Time
Ada," Proceedings of the BUSCON Conference, 14 - 16 February
1990, pp 271 - 275.

[SAF901] Survivable Adaptable Fiber Optic Embedded Network I, Military
Handbook MIL-HDBK-0034 (Draft), January 1990.

[SAF902] Survivable Adaptable Fiber Optic Embedded Network II, Military
Handbook MIL-HDBK-0036 (Draft), March 1990.

[STA871] Stallings, William, Handbook of Computer-Communications
Standards, Vol 1. New York: Macmillan Publishing Company, 1987.

[STA872] Stallings, William, Handbook of Computer-Communications
Standards, Vol 2. New York: Macmillan Publishing Company, 1987.

[STA88] Stallings, William, Paul Mockapetris, Sue Mcleod, and Tony Michel,
Handbook of Computer-Communications Standards, Vol 3. New
York: Macmillan Publishing Company, 1988.

[STE88] Stevens, Bruce W., "DECnet Ada Binding", Technical Memorandum
No. 88-2152, Naval Underwater Systems Center, Newport, RI,
28 September 1989.

48

[STE89] Stevens, Bruce W. and Pamela R. Perras, "An Ada Interface to
Networking with TCP/IP", Technical Memorandum No. 89-2036,
Naval Underwater Systems Center, Newport, RI, 19 April 1989.

[TAN88] Tananbaum, Andrew S., Computer Networks, 2nd ed. New Jersey:
Prentice-Hall, 1988.

[VAN89] Van Scoy, Roger, Judy Bamberger, and Robert Firth, "An Overview
of DARK," Ada Letters, November/December 1989, pp 91 - 101.

[XTP90] "XTP Protocol Definition, Revision 3.5," PEI 90-120, Protocol
Engines Inc., 10 September 1990.

- 49/50 -
Reverse Blank

BIBLIOGRAPHY

"Ada Programming Language," ANSI/MIL-STD-1815A, 22 January 1983.

Alnaes, Knut and Ernst H. Kristiansen, David B. Gustavson, "Scalable Coherent
Interface," SLAC-PUB-5184, Stanford Linear Accelerator Center, Stanford,
CA, January 1990.

Andrews, Warren, "Futurebus+ Now: Profiles Defined, Support Expanded,"
Computer Design, Vol 29, No 7, 1 April 1990, pp 22 - 26.

Bamberger, Judy and Roger Van Scoy, "Distributed Ada Real-Time Kernel,"
Proceedings of the IEEE 1988 National Aerospace & Electronics Conference:
NAECON88, May 1988, pp 1510 - 1516.

Baker, T. P., and K. Jeffay, "A Lace for Ada's Corset/' TR 86-09-05, Department
of Computer Science, University of Washington, Seattle, WA, 25 October
1986.

Baker, T. P., "A Corset for Ada," Version 1.1, TR 86-09-05, Department of
Computer Science, University of Washington, Seattle, WA, 8 February
1987.

Borrill, Paul L., "What is Futurebus+ ?," Proceedings of the BUSCON Conference,
14 - 16 February 1990. pp 303 - 315.

Brennan Jr., J. W., "Issues in the Design of Distributed Ada Programs," Masters
Thesis, University of Rhode Island, August 1989. Also published as "Issues
and Approaches in the Design of Distributed Ada Programs," NUSC
Technical Report 6834, Naval Underwater Systems Center, Newport, RI,
11 October 1989.

Carver, Richard and K. C. Tai, "Deterministic Execution Testing of Concurrent
Ada Programs," TPJ-Ada '89 Proceedings, September 1989, pp 528 - 544.

Cholerton, Andrew, "Ada For Closely Coupled Multiprocessor Targets," TPJ-Ada
'89 Proceedings, September 1989, pp 450 - 461.

Clapp, Russell M., Louis Duchesneau, Richard A Volz, Trevor N. Mudge, and
Timothy Schultze, "Toward Real-Time Performance Benchmarks For Ada,"
Communications of the ACM, Vol 29, No 8, August 1986.

Clapp, Russell M., and Trevor Mudge, "Ada on a Hypercube," Ada Letters, Vol
IX, No 2, 1989, pp 118 - 128.

51

r,

Clapp, Russell M., and Trevor Mudge, "Parallel and Distributed Issues," Ada
Letters Special Edition -- Ada Performance Issues, Vol X, No 3, 1990. pp
33 - 37.

Cohen, Norman H., Ada as a Second Language, New York: McGraw-Hill, 1986.

Day, John D. and Hubert Zimmermann, "The OSI Reference Model," Proceedings
of the IEEE, Vol 71, No 12., December 1983.

"DECnet DIGITAL Network Architecture (Phase V)," Digital Equipment
Corporation, September 1987.

De Francesco N., G. Perego, G. Vaglini, and M. Vanneschi, "Framework For
Data Flow Distributed Processing," Calcolo, Vol 17, No 4., October 1980,
pp 333 - 363.

Dowling, E. J., 'Testing Distributed Ada Programs," TRI-Ada '89 Proceedings,
September 1989, pp 517 - 527.

Ellis, John R., "A Periodic Ada Control Kernel (PACK)," TRI-Ada '89
Proceedings, September 1989, pp 464 - 473.

Fischer, Michael J., Nancy A Lynch, and Michael S. Paterson, "Impossibility of
Distributed Consensus with One Faulty Process," Journal of the ACM, Vol
32, No 2, April 1985, pp 374 - 382.

Green, Daniel T. and David T. Marlow, "Application of LAN Standards to the
Navy's Combat Systems," white paper, Engineering and Technology
Division, Combat Systems Department, Naval Surface Warfare Center,
Dahlgren, VA, 1989.

Griest, Thomas E., "Limitations on the Portability of Real Time Ada Programs,"
TRI-Ada '89 Proceedings, September 1989, pp 474 - 489.

Gustavson, David B., "Applications for the Scalable Coherent Interface," SLAC-
PUB-5244, Stanford Linear Accelerator Center, Stanford, CA, April 1990.

Inverardi, P., F. Mazzanti, and C. Montangero, "The Use of Ada in the Design of
Distributed Systems," Proceedings of the Ada International Conference, Paris,
14 - 16 May 1985, pp 85 - 96.

Inter-Process Communication Primer, Sun Microsystems, Mountain View, CA,
17 February 1986.

Jha, Rakesh, "Distributed Ada - Approach and Implementation," TRI-Ada '89
Proceedings, September 1989, pp 439 - 449.

52

Kenah, Lawrence J., and Simon F. Bate, VAX/VMS Internals and Data Structures,
Digital Press, Maynard, MA, 1984.

Kim, K. H., "Approaches to Mechanization of the Conversation Scheme Based on
Monitors," IEEE Transactions, Vol SE-8, No 3, May 1982, pp 189 - 197.

Lamport, L., "The Weak Byzantine Generals Problem," Journal of the ACM, Vol
30, No 3, July 1983, pp 668 - 676.

Liebein, Edward, "The Department of Defense Software Initiative - A Status
Report," Communications of the ACM, Vol 29, No 8, August 1986, pp 734 -
744.

Linnig, Michael, and Donna Forinash, "Ada Tasking and Parallel Processors,"
TRI-Ada '89 Proceedings, September 1989, pp 426 - 438.

Mao, T. William, and Raymond T. Yeh, "Communication Port: A Language
Concept for Concurrent Programming," IEEE Transactions on Software
Engineering, Vol SE-6, No 2., March 1980, pp 194 - 204.

Nielsen, Kjell W. and Ken Shumate, "Designing Large Real-Time Systems with
Ada," Communications of the ACM, Vol 30, No 8, August 1987, pp 695 -
715.

Notkin, David, Norman Hutchinson, Jan Sansislo, and Michael Schwartz,
"Heterogeneous Computing Environments: Report on the ACM SIGOPS
Workshop on Accommodating Heterogeneity," Communications of the
ACM, Vol 30, No 2, February 1987, pp 132 - 140.

Pease, M., R. Shostak, and L. Lamport, "Reaching Agreement in the Presence of
Faults," Journal of the ACM, Vol 27, No 2, April 1980, pp 228 - 234.

Perrin, Mark, "What Does Ada Offer The Embedded Systems Programmer?,"
Proceedings of the BUSCON Conference, 14 - 16 February 1990, pp 291 -
301.

Rabbie, Harold, "An Operating System for Real-Time Ada," TRI-Ada '89
Proceedings, September 1989, pp 490 - 497.

Rabbie, Harold, "Meeting Today's Requirements With Real-Time Ada,"
Proceedings of the BUSCON Conference, February 14 - 16, 1990, pp 271 -
275.

Royce, Walker, "Reliable, Reusable Ada Components for Constructing Large,
Distributed Multi-Task Networks: Network Architecture Services (NAS),"
TRI-Ada '89 Proceedings, September 1989, pp 500 - 516.

53

Survivable Adaptable Fiber Optic Embedded Network I, Military Handbook MIL-
HDBK-0034 (Draft), January 1990.

Survivable Adaptable Fiber Optic Embedded Network II, Military Handbook MIL-
HDBK-0036 (Draft), March 1990.

Sammet, Jean E., "Why Ada is not Just Another Programming Language,"
Communication of the ACM, Vol 29, No 8, August 1986, pp 722 - 732.

Sauer, Charles H., and K. Mani Chandy, Computer Systems Performance Modeling,
New Jersey: Prentice-Hall, 1981.

Schonberg, Edith, and Edmond Schonberg, "Highly Parallel Ada - Ada on an
Ultracomputer," Proceedings of the Ada International Conference, Paris,
14-16 May 1985, pp 58 - 71.

Sha, Lui, and John B. Goodenough, "Real-Time Scheduling Theory and Ada,"
Technical Report CMU/SEI-89-TR-14, ESD-TR-89-22, Software
Engineering Institute, Pennsylvania, April 1989.

Shin, Kang G., and Mark E. Epstein, "Communication Primitives for a Distributed
Multi-Robot System," IEEE International Conference on Robotics and
Automation, 25 - 28 March 1985, pp 910 - 917.

Stallings, William, Handbook of Computer-Communications Standards, Vol 1. New
York: Macmillan Publishing Company, 1987.

Stallings, William, Handbook of Computer-Communications Standards, Vol 2. New
York: Macmillan Publishing Company, 1987.

Stallings, William, Paul Mockapetris, Sue Mcleod, and Tony Michel, Handbook of
Computer-Communications Standards, Vol 3. New York: Macmillan
Publishing Company, 1988.

Stevens, Bruce W., "DECnet Ada Binding," Technical Memorandum No. 88-2152,
Naval Underwater Systems Center, Newport, RI, 28 September 1989.

Stevens, Bruce W. and Pamela R. Perras, "An Ada Interface to Networking with
TCP/IP," Technical Memorandum No. 89-2036, Naval Underwater Systems
Center, Newport, RI, 19 April 1989.

Tananbaum, Andrew S., Computer Networks, New Jersey: Prentice-Hall, 1981.

Tananbaum, Andrew S., Computer Networks, 2nd ed. New Jersey: Prentice-Hall,
1988.

54

4*

Van Scoy, Roger, Judy Bamberger, and Robert Firth, "An Overview of DARK,"
Ada Letters, November/December 1989, pp 91 - 101.

Volz, Richard A-, Trevor N. Mudge, Arch W. Naylor, and John H. Mayer, "Some
Problems in Distributing Real-Time Ada Programs Across Machines,"
Proceedings of the Ada International Conference, Paris, 14 - 16 May 1985, pp
72 - 84.

Wegner, Peter, and Scott A. Smolka, "Processes, Tasks, and Monitors: A
Comparative Study of Concurrent Programming Primitives," IEEE
Transactions on Software Engineering, Vol SE-9, No 4, July 1983, pp 446 -
462.

Whiddett, Dick, "Distributed programs: an overview of implementations,"
Microprocessors and Microsystems, Vol 10, No 9, November 1986, pp 475 -
484. .

Williamson, Ronald, and Ellis Horowitz, "Concurrent Communication and
Synchronization Mechanisms," Software-Practice and Experience, Vol 14, No
2, February 1984, pp 135 - 151.

XTP Protocol Definition, Revision 3.5, Protocol Engines Inc., PEI 90-120, 10
September 1990.

Zhou, Chang-Lin, and Zhou Gang. "A New Language Feature For Concurrent
Programming," International Symposium on New Directions in Computing,
12-14 August 1985, pp 311 - 317.

- 55/56 -
Reverse Blank

^^^"^^^^^^~

INITIAL DISTRffiUnON LIST

Addressee • No. of Copies

SPAWAR (231 (1), 2312 (4), 2312-Chan (1)) 6

CNA 1

DTIC 1

